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common feature of rheumatoid arthritis (RA) and osteoar-
thritis (OA). Proteoglycan loss that is observed in the devel-
opment of early OA5,6 results in a reduction in cartilage
stiffness.7,8 Degradation and loss of type-II collagen, which
are observed in RA and OA,9,10 result in an irreversible loss
of tensile properties and structural integrity.8 It is well
known that proinflammatory cytokines including
interleukin-1β (IL-1β) and tumor necrosis factor α (TNFα)
have been shown to promote cartilage degradation by
stimulating the production of matrix metalloproteinases
(MMPs).11

The importance of understanding cell–matrix interac-
tions at the level of regulation of matrix turnover is becom-
ing very apparent. In addition to the proinflammatory
cytokines, there is an increasing body of evidence that deg-
radation products of cartilage matrix are another amplifier
or catalyst in diseased joints, including RA and OA. This
review focuses on the mechanism of cartilage destruction
induced by matrix degradation products, especially by
fibronectin fragments (FN-fs).

Structure of fibronectin

Fibronectin (FN) is an adhesive dimeric glycoprotein of
450kDa found in the extracellular matrix of many tissues,
including normal cartilage12 and synovial membrane.13 It is
also present in such body fluids as synovial fluid and plasma.
As shown in Fig. 1, FN consists predominantly of three
types of homologous repeating segments (designated I, II,
and III). Significant protein heterogeneity results from the
alternative splicing of a single RNA.14,15 The glycoprotein
regulates functions of cellular adhesion and spreading, cell
motility, cell growth, and differentiation and opsonization.16

FN contains amino (NH2)-terminal heparin-, gelatin-, cell-
and carboxyl (COOH)-terminal heparin-binding domains.
The central cell-binding region has an Arg-Gly-Asp (RGD)
sequence in domain III10, recognized by several cell surface
integrin family members.17 Several sites in the heparin-
binding domain that are COOH-terminal to the central
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Introduction

The extracellular matrix of cartilage is primarily composed
of the large proteoglycan aggrecan and fibrils containing
type-II collagen.1 Type-II collagen, composed of a triple
helix of three identical α chains, forms fibrils stabilized by
intermolecular crosslinks.2 The fibrils provide tensile
strength and serve to constrain the swelling of aggrecan that
endows cartilage with its compressive stiffness.1,3,4 Progres-
sive destruction of cartilage, which results from an imbal-
ance between the anabolic and catabolic processes, is a
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cell-binding domain also interact with the cell surface. Sev-
eral peptides from domain III12–14 support cell attachment
with varying affinities.18–23 The IIICS, or the variable (V)
region, contains the integrin-binding sites, CS-1 and
CS-5.24–28

Fibronectin fragments in OA and RA

Elevated levels of FN are found in OA cartilage29–31 and in
OA synovial fluid.31,32 While FN is ubiquitous within active
rheumatoid synovium, enhanced accumulation of FN is
found on the inflamed synovial and pannus surfaces in the
knee joints of patients with RA.33,34 Fibronectin is readily
degraded into fragments by proteinases. Thus, activation of
extracellular proteolysis in OA and RA may lead to the
fragmentation of FN, indicating that FN-fs could be gener-
ated in vivo within cartilage and synovial fluid. Indeed,
increased levels of FN-fs of 30–200kDa are found in carti-
lage and synovial fluid from patients with OA and RA.31,32

In OA synovial fluids, FN-fs of 100–200kDa are found at
approximately 1µM.32 The levels of FN-fs in OA cartilage
are suggested to be similar to those in OA synovial fluids.31

The FN-f concentrations that have been used in in vitro
studies are less than 1µM, similar to the levels in in vivo
diseased joints. Since FN-fs can penetrate into cartilage
tissue in vitro,35 FN-fs in OA and RA cartilages may include
the fragments from synovial fluid.

Cartilage destruction by fibronectin fragments

Native FN has various biologic functions including cell at-
tachment, cell migration, wound healing, and oncogenic
transformation.14 However, native FN has no catabolic ef-
fect on cartilage.36,37 Once FN is fragmented, those pro-
teolytic fragments acquire catalytic activities. Of FN-fs, the

central cell-, NH2-terminal heparin-, and NH2-terminal
gelatin-binding fragments of FN have been shown to stimu-
late cartilage chondrolysis.36 Recently, COOH-terminal
heparin-binding FN-f has also been found to induce carti-
lage destruction.37 Removal of FN and FN-fs from OA syn-
ovial fluid can diminish cartilage-damaging activity,31

whereas injection of FN-fs into rabbit knee joints induces
depletion of cartilage proteoglycan.38 These findings sup-
port the pathophysiological significance of FN-fs.

Proteoglycan degradation by fibronectin fragments

Increased aggrecan degradation1 is commonly observed in
OA and RA. Homandberg et al. demonstrated for the first
time that NH2-terminal heparin-, NH2-terminal gelatin-,
and central cell-binding FN-fs enhance proteoglycan loss
from bovine cartilage36 and decrease proteoglycan synthe-
sis.39 In addition, COOH-terminal heparin-binding FN-f can
promote loss of proteoglycan in bovine cartilage.37

Degradation of aggrecan that occurs early in cartilage
damage is caused by aggrecanases40,41 and MMPs.42 Neo-
epitope antibodies specific for aggrecanase- or MMP-
degraded aggrecan fragments distinguish between these
activities in vivo.42 Anti-ITEGE373 and anti-A374RGSV anti-
bodies identify aggrecanase cleavage site in the aggrecan
interglobular domain, whereas anti-DIPEN341 and anti-
F342FGVG antibodies detect MMP cleavage site in the same
region. Both sites of aggrecanase cleavage are found in OA
and RA cartilage.43 Treatment with NH2-terminal gelatin-
binding FN-f results in the generation of aggrecanase-
derived ITEGE373 neoepitope in porcine cartilage.44 Amino
acid sequencing of aggrecan from cartilage with treatment
with NH2-terminal heparin-binding FN-f also confirms
cleavage at the aggrecanase site in bovine cartilage.45 How-
ever, there is no direct evidence on aggrecanase induction
by FN-f in chondrocytes. In contrast to aggrecanase-derived
neoepitope, levels of MMP-derived DIPEN341 neoepitope
are unchanged in the FN-f-treated cartilage.44

Fig. 1. Schematic representation
of fibronectin and its fragments.
The diagram shows one arm of
the fibronectin dimer, which is
linked by disulfide bonds. The
fibronectin fragments (FN-f)
described in this review are
NH2-terminal heparin-, NH2-
terminal gelatin-, central cell-,
and COOH-terminal heparin-
binding fragments of fibronectin
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Type-II collagen degradation by fibronectin fragments

Matrix metalloproteinases are a family of zinc-dependent
enzymes that mediate the turnover of extracellular matrix
proteins. Upregulation of MMPs has been implicated in
numerous pathologic processes, including OA and RA. The
MMP family is classified into gelatinases, which degrade
type-IV collagen and other basement membrane proteins;
collagenases, which degrade the stromal fibrillar collagens
(types I, II, and III); and others, which degrade additional
matrix components.46 Of MMPs, collagenases are particu-
larly important because of their ability to cleave fibrillar
collagen, the most abundant component of the extracellular
matrix.47 MMP-1 (collagenase-1) is expressed ubiquitously
and is found in various cells, including fibroblasts,
chondrocytes, and multiple tumor cells.47 MMP-8 (collage-
nase-2) is expressed mainly in neutrophils.47 MMP-13
(collagenase-3) exhibits the broadest substrate specificity
of the collagenases, with the highest activity against type-II
collagen, the main collagen in cartilage.48,49 Furthermore,
MMP-13 degrades types I, III, IV, X, and XIV collagen,
fibronectin, and aggrecan core protein.50–52 While MMP-13
expression is restricted to bone development and bone
maintenance under normal physiologic conditions,53,54 it is
upregulated under pathologic conditions like in OA
chondrocytes, rheumatoid synovium, and tumor cells.55–57

MMP-2 and MMP-9 are widely expressed and are best
known as gelatinases.

Werb et al. demonstrated for the first time that treatment
of cultured rabbit synovial fibroblasts with the central cell-
binding FN-f stimulates expression of MMP-1 and MMP-
3.58 The FN-f can induce MMP-13 in human chondrocytes.59

NH2-terminal gelatin-binding FN-f stimulates production of
MMP-13 and MMP-3 in porcine chondrocytes.44 NH2-termi-
nal heparin-binding FN-f enhances MMP-3 and gelatinase
expressions.36,60 While treatment with COOH-terminal
heparin-binding FN-f results in increased production of
MMP-3 and MMP-13 in bovine cartilage,37 the FN-f stimu-
lates production of MMP-1, MMP-2, MMP-9, and MMP-13
in human cartilage.61 The COOH-terminal heparin-binding
FN-f also induces MMP-1, MMP-3, and MMP-13 in RA
synovial fibroblasts.62 In association with MMP production,
the immunoassay for detection of type-II collagen cleavage
by collagenase55 has demonstrated that COOH-terminal
heparin-binding FN-f enhances collagenase-mediated
cleavage of type-II collagen in human61 and bovine37

cartilages. Matrix metalloproteinase-13 is a candidate colla-
genase responsible for the cleavage of type-II collagen be-
cause MMP-13 inhibitor can suppress the FN-f-induced
collagen cleavage.37

Nitric oxide production by fibronectin fragments

Nitric oxide (NO) is a short-lived free radical that is synthe-
sized enzymatically from l-arginine by a family of NO syn-
thase (NOS) isoenzymes.63,64 Nitric oxide is produced by a
variety of cells, including chondrocytes.65 Inducible NOS
(iNOS) is expressed in response to bacterial endotoxin and

proinflammatory cytokines such as IL-1. Once synthesized,
iNOS generates large amounts of NO. Inducible NOS is
strongly expressed in synovium and cartilage of patients
with inflammatory joint diseases.66 NO acts principally as a
proinflammatory and destructive mediator. The pathoge-
netic role of NO in arthritis is certainly supported by the
observation that inhibitors of NOS can suppress the devel-
opment of disease in animal models, such as adjuvant ar-
thritis and streptococcal cell wall arthritis.67,68 Of FN-fs,
NH2-terminal heparin-binding FN-f has been shown to
stimulate NO production in association with iNOS induc-
tion in human normal chondrocyte monolayer cultures.69

Another FN-f, COOH-terminal heparin-binding FN-f, also
causes increased NO production in RA cartilage.70

Cytokine production by fibronectin fragments

The early phase of cartilage degradation is associated with
enhanced release of proinflammatory cytokines.71,72 In
human cartilage NH2-terminal heparin-binding FN-f stimu-
lates a pulsed release of TNFα and IL-1β, followed by a
decrease in a few days. Enhanced release of IL-6 occurs
earlier and continues for three weeks. IL-1α release shows
a lag period.

Although cell responses to FN-fs and proinflammatory
cytokines including IL-1 are qualitatively similar,71,73 the
involvement of cytokines in FN-f effects is controversial.
The cytokine release by FN-f could partly account for the
catabolic effects of NH2-terminal heparin-binding FN-f on
MMP-3 production and proteoglycan synthesis in human
cartilage because antibodies to these cytokines partially
block the FN-f activities.72 Inhibition of FN-f effects with
IL-1 receptor antagonist indicates that IL-1 could mediate
type-II collagen cleavage by collagenase stimulated with
COOH-terminal heparin-binding FN-f in bovine cartilage37

and MMP-3 synthesis enhanced by RGD-containing pep-
tide of central cell-binding FN-f in rabbit chondrocytes.74 In
contrast, MMP induction by NH2-terminal gelatin-binding
FN-f in porcine chondrocytes44 and by COOH-terminal
heparin-binding FN-f in RA synovial fibroblasts62 is not via
an IL-1 autocrine loop. Nitric oxide production by NH2-
terminal heparin-binding FN-f in human chondrocytes is
also IL-1-independent.69

Receptors for fibronectin fragments

Cell–matrix interactions control cell function and behavior
by signal transduction through a variety of cell surface re-
ceptors. FN can bind several integrins and other cell surface
protein ligands.75

Integrin

Integrins are heterodimeric transmembrane proteins con-
sisting of α and β subunits. Integrins bind extracellular ma-
trix molecules and mediate cell adhesion, migration, and
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invasion during development, tissue repair, tumor invasion,
and metastasis. In concert with growth factor or cytokine
receptors, integrins regulate cell proliferation, differentia-
tion, and survival.76,77 Integrins also serve as cell surface
receptors that transduce intracellular signals.78–80 Although
the cytoplasmic domains of the integrin α and β subunits
have no intrinsic enzymatic activity, integrin signaling is
achieved by coupling signaling molecules to the cytoplasmic
and transmembrane domains of the integrin subunits.81

Integrins activate signaling pathways that are either com-
mon to all integrins or heterodimer-specific.82 The cytoplas-
mic domains of α subunits may trigger signaling events that
are specific for each individual integrin heterodimers.83,84

There is evidence that integrin regulates FN-f action. FN
can bind α5β1 integrin through the cell-binding domain in
III10 via RGD sequence (Fig. 1).85,86 Matrix matallo-
proteinase production by the central cell-binding FN-f is
probably mediated by α5β1 integrin because anti-α5β1
integrin antibody and RGD-containing peptide induce
MMP-1 and gelatinase in rabbit synovial fibroblasts.58 The
cell-binding FN-f and anti-α5β1 integrin antibody can in-
crease MMP-13 production in human chondrocytes.59 Re-
cent studies using antisense oligonucleotides to α5 integrin
subunit have also shown the involvement of α5 integrin in
cartilage proteoglycan degradation induced by NH2-termi-
nal heparin-binding and NH2-terminal gelatin-binding FN-
fs without cell-binding RGD sequence in addition to the
central cell-binding FN-f.87 These two NH2-terminal FN-fs
can be chemically cross-linked to α5 integrin subunit in
chondrocytes.88 However, employment of α5β1 integrin by
NH2-terminal heparin-binding FN-f remains to be investi-
gated because blocking antibodies to α5 or β1 integrin sub-
unit fail to inhibit the FN-f-stimulated NO production.69

Integrin α5β1 is the primary receptor involved in the assem-
bly of dimeric fibronectin into the extracellular matrix.89

The I1–5 repeats of NH2-terminal heparin-binding FN-f
block the assembly of FN into fibrils, and FN dimers lacking
these domains fail to be incorporated into fibrils.90–93 NH2-
terminal heparin-binding FN-f may interfere with FN as-
sembly and indirectly alter α5β1 signaling.

Rheumatoid arthritis synovial fibroblasts at the carti-
lage–pannus junction express integrin subunits α4, α5, and
β1.94 Integrin α4β1 recognizes CS-1 in alternatively spliced
IIICS domain of FN.95,96 Inhibition of MMP production with
anti-α4 integrin antibody indicates that COOH-terminal
heparin-binding FN-f, which contains CS-1 (Fig. 1), stimu-
lates MMP-1, MMP-3, and MMP-13 in RA synovial
fibroblasts via α4β1 integrin.62 Indeed, CS-1 peptide induces
these MMPs in the cells.62 Since α4β1 integrin is newly
expressed on articular chondrocytes in OA cartilage,97,98 the
COOH-terminal heparin-binding FN-f may work via the
integrin in OA chondrocytes.

Excessive amounts of RGD peptide are required to in-
duce proteoglycan release in cartilage explant culture while
the central cell-binding FN-f at the same level causes stron-
ger release of proteoglycan.36 Compared with CS-1 peptide,
the COOH-terminal heparin-binding FN-f can induce
greater levels of MMPs.62 Thus, FN-f could activate
integrins more effectively than synthetic peptides.

CD44

Another cell surface receptor that could mediate FN-f ac-
tion is CD44, a principal hyaluronan receptor.99 The CD44
gene has 20 exons, 12 of which may be alternatively spliced
to produce a number of different isoforms.100 Restricted
expression of CD44 isoforms and post-translational
glycosylation of the parent protein provide diverse func-
tions of CD44. Of CD44 isoforms, CD44H is commonly
expressed in human articular chondrocytes.101 Although
CD44H is predominant, mRNA containing V3 exon of
CD44 is also found in chondrocytes.101 The diversity of
CD44 is further amplified by the differential use of gly-
cosaminoglycan attachment sites on its extracellular do-
main. While chondroitin sulfate proteoglycan is attached to
the membrane proximal portion of external domain of
CD44H,102 heparan sulfate proteoglycan can bind CD44 at
V3 in the membrane proximal extracellular domain of
CD44v.103 Chondroitin sulfate and heparan sulfate
proteoglycans employ identical or overlapping binding sites
in the repeats III13 and III14 of COOH-terminal heparin-
binding FN-f (Fig. 1).104,105 The COOH-terminal heparin-
binding domain of FN is known to bind CD44.104 While
MMP production is up-regulated by COOH-terminal hep-
arin-binding FN-f in human articular cartilage, anti-CD44
antibody can block the enhanced MMP production.61 Sup-
pression of the FN-f-stimulated MMP production by pep-
tide V61 suggests that the peptide V domain, a binding site of
COOH-terminal heparin-binding FN-f for cell surface
heparan sulfate proteoglycan,106 is required for the FN-f-
activated MMP induction. Thus, COOH-terminal heparin-
binding FN-f may directly bind glycosaminoglycans on
CD44 through the peptide V sequence, resulting in MMP
induction.

CD44 is upregulated in articular cartilage from patients
with OA107 and RA.108 Compared with normal cartilage, RA
cartilage produces higher NO in response to the COOH-
terminal heparin-binding FN-f.70 Anti-CD44 treatment us-
ing the monoclonal anti-CD44 antibody and the peptide V
reveals that NO production enhanced by COOH-terminal
heparin-binding FN-f is mediated by CD44 in RA carti-
lage.70 The inhibitory effects of anti-CD44 treatment are
stronger in RA cartilage than in normal one, probably be-
cause CD44 is upregulated in RA cartilage and the propor-
tion of CD44-positive chondrocytes is significantly higher
than that in normal cartilage.70 These findings indicate that
increased NO production by COOH-terminal heparin-
binding FN-f in RA cartilage is associated with elevated
levels of CD44 on chondrocytes under such pathologic con-
ditions. Of interest, FN-fs themselves may upregulate CD44
on chondrocytes because NH2-terminal heparin-binding
FN-f enhances CD44 expression in chondrocytes cultured
in alginate beads,109 which allows abundant cartilage matrix
deposition around chondrocytes like in vivo cartilage.110
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Intracellular signaling pathways activated by
fibronectin fragments

Some FN-fs have been shown to activate the intracellular
signaling pathways, mitogen-activated protein kinase
(MAPK) and nuclear factor (NF)-κB pathways, leading to
cartilage destruction.

Mitogen-activated protein kinase pathway

Activator protein-1 (AP-1), which includes members of the
Jun and Fos families, is a pivotal transcriptional factor that
regulates the production of cytokines and MMPs. The up-
stream regulatory regions of MMP genes contain the AP-1
recognition site.111,112 Activator protein-1 can be activated
by protein kinases that phosphorylate specific amino acid
residues, especially by MAPK families.113 Three major
MAPK families have been identified: extracellular signal-
regulated kinase (ERK), p38 MAPK, and c-Jun NH2-
terminal kinase (JNK).114,115 All the three MAPK pathways
are involved in the transcriptional regulation of Fos and Jun
family genes.

The central cell-binding FN-f activates ERK, p38, and
JNK, and increases the production of MMP-13 and
gelatinases by human articular chondrocytes.59 Another
fibronectin fragment, NH2-terminal heparin-binding FN-f,
stimulates NO production in association with the activation
of ERK, p38, and JNK in human chondrocytes.69 Further-
more, collagenase induction leading to type-II collagen
breakdown by COOH-terminal heparin-binding FN-f in-
volves all the three MAPK pathways in human articular
cartilage.116 The COOH-terminal heparin-binding FN-f also
causes phosphorylation of ERK1/2, JNK, and p38 for MMP
production in RA synovial fibroblasts62 and in human natu-
ral killer cells.117

Individual MAPK pathways may play different roles in
the production of individual MMPs in response to FN-f. In
RA synovial fibroblasts ERK seems to be involved in
MMP-1, MMP-3, and MMP-13 production with COOH-
terminal heparin-binding FN-f stimulation, whereas p38
MAPK may contribute to MMP-3 induction by the FN-f.
JNK seems to promote the production of MMP-1 and
MMP-13 in the FN-f-stimulated RA synovial fibroblasts.62

Different fragments of fibronectin may activate different
isoforms of JNK. In human normal chondrocytes, NH2-
terminal heparin-, central cell-, and COOH-terminal hep-
arin-binding FN-fs have been shown to individually activate
ERK1/2 and p38.59,69 The NH2-terminal heparin-binding
FN-f activates JNK169 whereas the central cell-binding frag-
ment induces the activation of JNK1/2.59 In contrast, the
COOH-terminal heparin-binding FN-f activates JNK2.116

Coupling of integrin receptors to MAPK pathways has
been reported.118 Anti-α5β1 integrin antibody can activate
ERK, p38, and JNK1/2 in human chondrocytes.59 In addi-
tion, CS-1 peptide, which binds α5β1 integrin, causes the
phosphorylation of these three MAPKs in RA synovial
fibroblasts.62 Thus, some integrin-binding FN-fs may em-

ploy integrin as a signaling receptor for MAPK activation.
Upstream events in activation of MAPK cascades in asso-
ciation with FN-f stimulation remain to be clarified.

Nuclear factor-κB pathway

Nuclear factor-κB is another key regulator for MMPs.119,120

Activation of NF-κB is dependent on the phosphorylation
and degradation of IκB, an endogenous inhibitor that binds
to NF-κB in the cytoplasm.121 The released NF-κB then
translocates to the nucleus, where it binds to specific NF-κB
DNA binding sites and initiates gene expression including
MMPs.

In contrast to MAPKs, NF-κB activation by FN-fs has
rarely been studied. Phosphorylation of IκB by anti-α5β1
antibody suggests that the integrin-binding FN-fs could

Fig. 2. Effects of mitogen-activated protein kinase (MAPK) and
nuclear factor (NF)-κB inhibitors on matrix metalloproteinase (MMP)
production (A) and type-II collagen cleavage by collagenase (B) by
human articular cartilage with treatment with COOH-terminal hep-
arin-binding fibronectin fragment (FN-f). Articular cartilage explants
were preincubated with one of PD98059 at 50 µM that inhibits MEK,
SD203580 at 1 µM that inhibits p38 or at 10 µM that inhibits p38 and
JNK, and pyrrolidine dithiocarbamate (PDTC) at 30 µM (NF-κB in-
hibitor), and thereafter stimulated with the FN-f. Control cultures were
without any additives. A Levels of proMMP-1 and proMMP-13 in
conditioned media were analyzed by immunoblotting. B The collage-
nase-generated cleavage epitope in type II collagen was measured by
enzyme-linked immunosorbent assay in conditioned media and carti-
lage (the latter following proteolysis of collagen to release epitope).
Values are the mean ± SD of four determinations. *P < 0.05 versus FN-
f-treated cultures
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Conclusion

Increased fragments from matrix degradation could play an
important role in cartilage destruction in arthritis. These
fragments activate chondrocytes and synovial fibroblasts,
leading to the induction of MMPs, NO, and cytokines. Cata-
bolic activities by FN-fs are probably mediated by cell sur-
face receptors such as integrins that can stimulate catabolic
intracellular signals, including MAPK (Fig. 3). Thorough
understanding of the mechanism driven by matrix degrada-
tion products may contribute to prevention of cartilage de-
struction in OA and RA.
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